AQA Chemistry **GCSE** Student activity

C4.3

Class

Date

Equations and calculations

Specification references

Name

- C3.2.2 Amounts of substances in equations (I)
- C3.2.3 Using moles to balance equations II
- C3.2.4 Limiting reactants
- MS 1a, 1c, 3c, 3d
- WS 4.1

Aims

This activity gives you practice in using balanced equations to calculate the masses of substances that react. It also gives you practice in writing balanced equations if the masses of the reactants and products are known. Converting masses into moles is an important part of this.

Learning outcomes

After completing this activity, you should be able to:

- explain why chemical equations must be balanced
- calculate the masses of substances shown in a balanced symbol equation
- calculate the masses of reactants and products from the balanced symbol equation and the mass of a given reactant or product
- write a balanced equation given the masses of reactants and products
- identify the limiting reactant in a chemical equation
- explain the effect of a limiting quantity of a reactant on the amount of products it is possible to obtain
- use balanced equations to calculate reacting masses when there is a limiting reactant.

Setting the scene

This activity gives you practice in using balanced equations to calculate the masses of substances that react. There are three steps to this type of calculation:

- use the M_r to work out the number of moles of the substance whose mass you know (no. of moles = mass in g/M_r)
- use the balanced equation to work out the number of moles of the substance whose mass you are finding
- calculate the mass of this substance from its M_r (mass in $g = M_r \times no.$ of moles).

You can also use these ideas to write a balanced equation if the masses of reactants and products are known.

[©] Oxford University Press 2016 <u>www.oxfordsecondary.co.uk/acknowledgements</u>

AQA Chemistry **GCSE** Student activity

Name

C4.3

Class

Date

Worked example

Sodium hydroxide reacts with chlorine gas to make bleach. This reaction happens when chlorine gas is bubbled through a solution of sodium hydroxide. The balanced symbol equation for the reaction is:

2NaOH	+	Cl ₂	\rightarrow	NaOCI	+	NaCl	+	H ₂ O
sodium hydroxide		chlorine		bleach		salt		water

If we have a solution containing 100 g of sodium hydroxide, how much chlorine gas do we need to convert it to bleach?

Solution

$(A_r \text{ values: } H = 1, O = 16, Na = 23 \text{ and } Cl = 35.5)$	Mass of 1 mole of			
	NaOH	Cl ₂		
	= 23 + 16 + 1 = 40	$= 35.5 \times 2 = 71$		

The table shows that 1 mole of sodium hydroxide has a mass of 40 g.

So 100 g of sodium hydroxide is $\frac{100}{40} = 2.5$ moles.

The balanced symbol equation tells us that for every 2 moles of sodium hydroxide we need 1 mole of chlorine to react with it.

So we need $\frac{2.5}{2} = 1.25$ moles of chlorine.

The table shows that 1 mole of chlorine has a mass of 71 g.

So we will need 1.25 \times 71 = 88.75 g of chlorine to react with 100 g of sodium hydroxide.

Task

Make a flow chart to summarise the steps involved in calculating the masses of substances reacting. With a different colour, illustrate it using the worked example above.

Use your flow chart to help you answer the questions that follow.

Questions

1 When calcium carbonate is heated, it decomposes to form calcium oxide and carbon dioxide. This reaction is represented by the following equation:

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

AQA Chemistry **GCSE** Student activity

Name	•		Class	Date	
а	Cal	culate the $M_{\rm r}$ of CaCO ₃ and CaO.			
					(1 mark)
b	lf 2	5 g of calcium carbonate is heated: calculate the number of moles of calcium carbo	nate used		
		from the help period any state the number of			(1 mark)
	"	oxide produced	T moles of calcium		
					(1 mark)
	iii	calculate the mass of calcium oxide produced.			(T mark)
С	Cal whe	culate the M_r of CO ₂ and use it to calculate the n entry of 1 kg (1000 g) of CaCO ₃ is heated.	nass of CO ₂ produced		(1 mark)
					(1 mark)
	•••••	(A _r values: Ca = 40, O = 16, C = 12	2)		(T mark)
2 Wł	hen l	ead dioxide is heated with hydrogen, the followin $PbO_2(s) + 2H_2(g) \rightarrow Pb(s) + 2H_2O(g)$	ng reaction occurs: J)		
a	Wo	ork out the M_r of PbO ₂ .			(1 mark)
U	i 4	the number of moles of lead dioxide used			
					(1 mark)
					. ,

C4.3

© Oxford University Press 2016 <u>www.oxfordsecondary.co.uk/acknowledgements</u>

A G		E Student activity C4.3	
Name	ə	Class Date	
	ii	the number of moles of lead produced	
	iii	the mass of lead produced.	(1 mark)
C	Ca	lculate the mass of hydrogen needed to make 20 7 g Pb	(1 mark)
		(A _r values: Pb = 207, O = 16, H = 1)	(3 marks)
3 So	odiur	n hydrogencarbonate decomposes on heating:	
		$2 \text{ NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(g) + \text{CO}_2(g)$	
а	lf 3 i	.36 g of sodium hydrogencarbonate is heated calculate: the number of moles of sodium hydrogencarbonate used	
			(1 mark)
	ii	the number of moles of sodium carbonate produced	
			(1 mark)
		the mass of sodium carbonate produced.	
			(1 mark)

G		SE Student activity C4.3	
lam	ə	Date	
b	lf : ma	2.1 kg (2100 g) of sodium hydrogencarbonate is heated, calculate the ass of CO_2 produced.	
			(3 marks)
С	So is	odium hydrogen carbonate is commonly known as bicarbonate of soda. It used in cake making to make the dough rise. Explain how it does this.	
			1 / morve
P	otas	(A_r values: $Na = 23$, $C = 12$, $O = 16$, $H = 1$) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂)	(2 marks
Pe ar W a	otas id o hen Us	(A_r values: Na = 23, C = 12, O = 16, H = 1) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced.	(z marks,
Pe ar W a	otas id o hen Us	(A_r values: Na = 23, C = 12, O = 16, H = 1) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced.	(2 marks)
Pe ar W a b	btas nd oz hen Us 	(A_r values: $Na = 23$, $C = 12$, $O = 16$, $H = 1$) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced.	(2 marks) (1 mark)
Po ar W a	otas nd o: hen Us Ca	(A_r values: $Na = 23$, $C = 12$, $O = 16$, $H = 1$) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced.	(2 marks) (1 mark) (2 marks)
Pi ar W a b	otas id o: hen Us Ca i	(A_r values: $Na = 23$, $C = 12$, $O = 16$, $H = 1$) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced. alculate the M_r values of KNO ₃ , KNO ₂ , and O ₂ .	(2 marks) (1 mark) (2 marks)
Po ar W a b	otas Id o: hen Us Ca Ca	$(A_r \text{ values: } Na = 23, C = 12, O = 16, H = 1)$ sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced. alculate the M_r values of KNO ₃ , KNO ₂ , and O ₂ .	(2 marks) (1 mark) (2 marks)
Po ar W a b	otas Id o: hen Us Ca i	$(A_r \text{ values: } Na = 23, C = 12, O = 16, H = 1)$ sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. See the law of conservation of mass to work out the mass of O ₂ produced. alculate the <i>M_r</i> values of KNO ₃ , KNO ₂ , and O ₂ . alculate the number of moles of KNO ₃	(2 marks, (1 mark) (2 marks) (1 mark)
b Po ar W a	otas nd o: hen Us Ca i	(<i>A</i> _r values: Na = 23, C = 12, O = 16, H = 1) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced. alculate the <i>M</i> _r values of KNO ₃ , KNO ₂ , and O ₂ . alculate the number of moles of KNO ₃ KNO ₂	(2 marks (1 marks) (2 marks)
Po ar W a	otas od o: hen Us Ca i	(Ar values: Na = 23, C = 12, O = 16, H = 1) sium nitrate (KNO ₃) decomposes on heating to give potassium nitrite (KNO ₂) xygen (O ₂). 4.04 g of KNO ₃ is heated, 3.40 g of KNO ₂ is produced. se the law of conservation of mass to work out the mass of O ₂ produced. alculate the <i>M</i> _r values of KNO ₃ , KNO ₂ , and O ₂ . alculate the number of moles of KNO ₃ KNO ₂	(2 marks (1 mark (2 marks (1 mark

A	QA	Chemistry		
Gl	SE	Student activity	C4.3	3
Name	ə		Class	Date
	iii O ₂ .			
d	Work ou ratio to v	ut the simplest whole number ratio of these write a balanced equation for the reaction.	values and use this	(1 mark)
e	 Explain	why potassium nitrate is an important com	ponent in fireworks.	(2 marks)
		(A _r values K = 39, N = 14, O = 16))	
5 Irc an W pr a	on(III) oxic ad carbon hen 480 g oduced. Use the	de (Fe_2O_3) is reduced by carbon on heating dioxide (CO ₂). g of Fe ₂ O ₃ is heated with carbon, 336 g of F law of conservation of mass to work out th	i to give iron metal (Fe) Fe and 198 g of CO ₂ are he mass of carbon that	
b	Calculat	te the simplest whole number ratio of moles	s of Fe₂O₃, C, Fe, and C	
	·····			

AQA Chemistry **GCSE** Student activity C4.3Class Date Name Write a balanced equation for the reaction. С (1 mark) Explain why this is an important industrial process. d (1 mark) $(A_r values Fe = 56, C = 12, O = 16)$ Student follow up In a chemical reaction involving two reactants, it is common to use an excess of one of the reactants to ensure that all of the other reactant is used. The reactant that is completely used up is called the limiting reactant because it limits the amount of products that can be made. The following questions illustrate these ideas. The reaction between copper oxide and carbon can be used to make copper 1 metal. The equation for this reaction is: $2CuO(s) + C(s) \rightarrow 2Cu(s) + CO_2(g)$ A mixture of 4.0 g of CuO and 1.2 g of carbon is heated. а Calculate the number of moles in 4.0 g of CuO. (1 mark) Calculate the number of moles in 1.2 g of C. b (1 mark) The balanced equation tells us that for every 1 mole of carbon we need 2 С moles of copper oxide. Use your answers to a and b to work out which reactant is the limiting reactant. (2 marks)

© Oxford University Press 2016 <u>www.oxfordsecondary.co.uk/acknowledgements</u>

A	QA	Chemistry		
G	CSE	Student activity	C4. 3	3
Nam	e		Class	Date
d	What ma	ass of Cu would you expect to make?		
				(2 marks)
		$(A_r \text{ values: } Cu = 64, C = 12, O = 12)$	= 16)	
2 TI m	ne reactior ake zinc c	n between zinc carbonate and hydrochl chloride.	oric acid can be used to	
11		$Z_n CO_n(s) + 2HCl(2n) \rightarrow Z_n Cl_n(2n) + H_n(s)$	$O(l) + CO_2(a)$	
6	25 a of 7n	$2 (1003(3) + 2) (100(aq) \rightarrow 2) (102(aq) + 1)2$	$S(1) + CO_2(g)$	
a.	Which re	eactant is in excess? Show your reasor	ning.	
				(4 marks)
b	What ma	ass of zinc chloride would you expect to	o make?	
				(2 marks)
		(A _r values: Zn = 65, Cl = 35.5, H	<i>t</i> = 1)	